PRODUCT CLASSIFICATION
產(chǎn)品分類摘要:傳統(tǒng)10kV環(huán)網(wǎng)柜存在智能化程度低、電纜頭故障率高、測溫困難等問題,缺乏一種有效的在線測溫技術(shù),難以滿足數(shù)字配電網(wǎng)發(fā)展需求。為有效解決這些問題,實(shí)現(xiàn)設(shè)備狀態(tài)感知,設(shè)計了一種基于物聯(lián)網(wǎng)技術(shù)的無線測溫系統(tǒng)。該方法采用高壓感應(yīng)取能、基于Zigbee協(xié)議的無線傳輸通信方式,可實(shí)現(xiàn)10kV環(huán)網(wǎng)柜關(guān)鍵位置溫度狀態(tài)感知,為智能電網(wǎng)運(yùn)行維護(hù)提供可靠的管理方案。
關(guān)鍵詞:電力物聯(lián)網(wǎng);無線測溫傳感器;感應(yīng)取能;無線傳輸;狀態(tài)感知
0引言
電力設(shè)備在運(yùn)行中,由于過負(fù)荷、電纜和觸頭接觸不良、短路等原因造成的事故時有發(fā)生。由于電纜頭制作工藝問題,10kV環(huán)網(wǎng)柜在運(yùn)行中可能會因電纜頭發(fā)熱進(jìn)而引起局部放電或絕緣老化,可能會導(dǎo)致環(huán)網(wǎng)柜發(fā)生單相接地并發(fā)生相間短路爆炸事故。隨著我國經(jīng)濟(jì)的快速增長和配電網(wǎng)規(guī)模的迅速發(fā)展,設(shè)備數(shù)量與種類越來越多,但相關(guān)設(shè)備的智能化程度卻較低,運(yùn)行和維護(hù)的復(fù)雜度也越來越高。傳統(tǒng)的運(yùn)維方式費(fèi)時、費(fèi)力,無法保證配電網(wǎng)運(yùn)行的經(jīng)濟(jì)性和安全性,因而單一依賴于傳統(tǒng)的人工運(yùn)維模式難以滿足未來發(fā)展需求。蘇東、馬仲能等人對配網(wǎng)開關(guān)柜全生命周期成本模型及敏感度做出分析,分析表明一個配網(wǎng)開關(guān)柜的巡檢成本高達(dá)327萬,而故障成本高達(dá)120.44萬[2]。因此,實(shí)現(xiàn)配電設(shè)備狀態(tài)感知、運(yùn)行數(shù)據(jù)的自動獲取、故障信息主動預(yù)警,降低運(yùn)營成本,是落實(shí)“數(shù)字南網(wǎng)"的具體舉措。本文設(shè)計了集成物聯(lián)網(wǎng)技術(shù)、大數(shù)據(jù)技術(shù)、無線通信等技術(shù),通過在環(huán)網(wǎng)柜電纜頭植入無線測溫傳感器,從而實(shí)時掌控環(huán)網(wǎng)柜溫度變化趨勢,該方法可以為智能運(yùn)維提供決策依據(jù),解決環(huán)網(wǎng)柜電纜頭測溫難題。
1無線測溫系統(tǒng)解決方案
無線測溫系統(tǒng)按三層架構(gòu)設(shè)計,感知層主要包括布置于環(huán)網(wǎng)柜的無線測溫傳感器、數(shù)據(jù)采集終端,負(fù)責(zé)底層數(shù)據(jù)采集和邊緣計算;網(wǎng)絡(luò)層由網(wǎng)絡(luò)管理系統(tǒng)、有線或無線數(shù)據(jù)網(wǎng)絡(luò)、云計算平臺等組成,負(fù)責(zé)將采集終端的數(shù)據(jù)通過網(wǎng)絡(luò)安全加密后傳輸給云計算平臺;應(yīng)用層物聯(lián)網(wǎng)與用戶的接口,與用戶的業(yè)務(wù)需求相結(jié)合,實(shí)現(xiàn)物聯(lián)網(wǎng)的智能化服務(wù)應(yīng)用。
1.1無線測溫硬件架構(gòu)
無線測溫監(jiān)控硬件系統(tǒng)主要由測溫傳感器、Zigbee通信模塊、數(shù)據(jù)采集終端、通信總線或以太網(wǎng)口、工控機(jī)、云服務(wù)器和移動應(yīng)用終端等組成。通過傳感器實(shí)時采集環(huán)網(wǎng)柜電纜頭位置的溫度,以無線通信形式傳輸給數(shù)據(jù)采集終端,經(jīng)數(shù)據(jù)處理、運(yùn)算分析后在本地顯示測量溫度值,同時通過RS48總線或以太網(wǎng)接口,將數(shù)據(jù)傳輸工控機(jī),并保存在云服務(wù)器,客戶可通過監(jiān)控主站或移動應(yīng)用客戶端查閱溫度信息。
圖1環(huán)網(wǎng)柜無線測溫系統(tǒng)架構(gòu)
1.2數(shù)據(jù)無線傳輸方案
無線測溫裝置直接測量環(huán)網(wǎng)柜高壓電纜頭關(guān)鍵位置溫度,長期處于高壓磁場中,既要解決電磁干擾問題,同時需解決絕緣以及數(shù)據(jù)傳輸問題,這是本系統(tǒng)設(shè)計的難點(diǎn)之一。為解決上述問題,本測溫系統(tǒng)采用模塊化設(shè)計,傳感器澆注于高壓電纜堵頭中,數(shù)據(jù)采集終端安裝于環(huán)網(wǎng)柜的低壓二次小室,傳感器與數(shù)據(jù)采集終端之間采用基于Zigbee協(xié)議無線傳輸,無需改變環(huán)網(wǎng)柜的內(nèi)部結(jié)構(gòu),避免受高壓電磁場的干擾,同時便于今后運(yùn)行與維護(hù)。該方案數(shù)據(jù)傳輸基于Zigbee協(xié)議,Zigbee是基于IEEE802.15.4標(biāo)準(zhǔn)的個域網(wǎng)協(xié)議[3-4],基于Zigbee協(xié)議的通訊技術(shù)是一種功耗低、距離較近且簡單易實(shí)現(xiàn)的無線通訊技術(shù),能夠很好地應(yīng)用于變配電站內(nèi)的數(shù)據(jù)傳輸。
圖2測溫裝置無線數(shù)據(jù)傳輸原理框圖
如圖2所示,傳感器中集成了無線數(shù)據(jù)傳輸發(fā)射模塊,數(shù)據(jù)采集終端中集成了接收模塊,接收端實(shí)現(xiàn)數(shù)據(jù)集中器的功能,接收、上傳、運(yùn)算所在范圍內(nèi)溫度傳感模塊的數(shù)據(jù),從而實(shí)時、可靠地收集范圍內(nèi)的有效數(shù)據(jù)。該模塊采用樹狀拓?fù)浣Y(jié)構(gòu),具有較強(qiáng)的可擴(kuò)展性,從而實(shí)現(xiàn)系統(tǒng)架構(gòu)中的通信功能。
2無線傳感器設(shè)計及其關(guān)鍵技術(shù)
2.1微功率感應(yīng)取能傳感器設(shè)計
無線測溫傳感器是利用壓感應(yīng)取能,熱電阻接觸式測溫與無線傳輸技術(shù)原理,實(shí)現(xiàn)環(huán)網(wǎng)柜電纜頭的溫度實(shí)時采集。測溫傳感器是將測溫探頭、電源模塊、金屬屏蔽罩、無線數(shù)據(jù)發(fā)射模塊和MCU核心模塊澆注于環(huán)氧樹脂電纜堵頭內(nèi),結(jié)構(gòu)設(shè)計如圖3所示。當(dāng)電纜運(yùn)行時,在傳感器高壓導(dǎo)電端內(nèi)部產(chǎn)生交變電場,由金屬屏蔽罩和電纜芯線之間的懸浮電容C1形成電勢差,該電勢差經(jīng)濾波、整流和穩(wěn)壓后為傳感器供能。傳感器電路板設(shè)有熱電阻,直接與電纜連接螺桿連接,測量此處溫度。MCU核心模塊監(jiān)測熱電阻的線性變化,來判斷電纜頭連接處的溫度變化,并將采集的數(shù)據(jù)經(jīng)無線的方式傳輸給數(shù)據(jù)采集終端,由采集終端完成數(shù)據(jù)采集、處理與運(yùn)算,并將數(shù)據(jù)傳輸給監(jiān)控后臺或移動客戶端,測溫原理如圖4所示。
圖3傳感器結(jié)構(gòu)設(shè)計
圖4無線測溫裝置原理框圖
2.2傳感器的耐高溫和抗干擾等性能設(shè)計
傳感器內(nèi)置于經(jīng)環(huán)氧樹脂澆注的電纜堵頭內(nèi),且處于高壓磁場中,為確保傳感器運(yùn)行時的可靠性,需解決傳感器的自身的局部放電、散熱與抗干擾等問題。傳感器需要在設(shè)計取能裝置時候充分考慮到杜絕間隙放電和介質(zhì)放電的問題。因此,結(jié)構(gòu)設(shè)計方面通過在傳感器電路板外設(shè)計了金屬屏蔽罩,用于均勻內(nèi)部場強(qiáng)分布,并通過ANSYS仿真系統(tǒng)進(jìn)行仿真驗(yàn)證,傳感器的澆注工藝方面,保證澆注后傳感器內(nèi)部無氣泡。傳感器在高溫環(huán)境中工作也是本研究的難點(diǎn)之一,本設(shè)計采用電壓感應(yīng)取能,傳感器采用低功耗電路設(shè)計,基于Zigbee協(xié)議的低功耗通信模塊,確保微弱能量情況下工作,傳感器運(yùn)行時的工作電流為微安級,通訊瞬時電流15mA。同時,傳感器應(yīng)考慮高溫環(huán)境下的正常工作,因此,傳感器選用的材料能夠保障60℃以上的環(huán)境溫度穩(wěn)定運(yùn)行,150℃時數(shù)據(jù)能正常測量,280℃時傳感器內(nèi)部元器件不發(fā)生形變或損壞。無線信號傳輸采取抗干擾措施,在元器件選擇上采用抗干擾力強(qiáng),溫度范圍廣的器件。同時,在結(jié)構(gòu)設(shè)計和電路設(shè)計根據(jù)規(guī)則充分考慮EMC特性。*后,傳感器信號傳輸采用ZigBee協(xié)議進(jìn)行無線傳輸,ZigBee采用O-QPSK信號調(diào)制方式,自身具有很強(qiáng)的抗干擾和糾錯能力。
2.3提高絕緣與避免局放
由于測溫傳感器集成在電纜絕緣堵頭內(nèi)部,因此如何確保絕緣強(qiáng)度,避免局放產(chǎn)生是設(shè)計的核心要素之一。測溫傳感器優(yōu)化電路板設(shè)計,將所有的器件集成在很小的環(huán)型電路板內(nèi),確保電路板安裝在絕緣堵頭銅金屬件內(nèi),不會因?yàn)閭鞲衅鞯拇嬖诙档铜h(huán)氧樹脂的厚度。傳感器依靠分壓原理獲取能量,需要在高壓與接地端中間布置一金屬電極。該電極的布置在高壓電場中會形成懸浮電極,造成較大的局部放電。為了避免懸浮電極產(chǎn)生局放,需要在取能電路中充分考慮。依靠取能電路穩(wěn)定工作,且充放電頻率匹配來確保懸浮電極無局放產(chǎn)生。
3數(shù)據(jù)處理與告警機(jī)制
3.1軟件抗干擾設(shè)計
測溫傳感器與采集器之間采用無線傳輸方式,無線信號在傳輸中,易收到外界干擾而造成誤傳、誤收和信號無法接收等情況。為提高可靠性,載軟件設(shè)計方面,通過以下幾種措施解決:CRC循環(huán)冗余校驗(yàn):循環(huán)冗余校驗(yàn)對傳輸數(shù)據(jù)進(jìn)行校驗(yàn),根據(jù)傳輸數(shù)據(jù)內(nèi)容和CRC算法,得到16比特的CRC校驗(yàn)碼,填充在幀的CRC部分發(fā)送給接收方。若接收方對接收到數(shù)據(jù)和CRC算法進(jìn)行計算,得到16比特的CRC校驗(yàn)碼如果和數(shù)據(jù)傳輸部分的CRC吻合,則發(fā)送時沒有出現(xiàn)比特錯誤;若不吻合,則發(fā)送時出現(xiàn)比特錯誤,丟棄該數(shù)據(jù)。防碰撞與無線信道監(jiān)測機(jī)制:ZigBee采用的是CSMA/CA(載波多路訪問)的防碰撞機(jī)制。送出數(shù)據(jù)前,媒體狀態(tài),等沒有人使用媒體,維持一段時間后,再等待一段隨機(jī)的時間后依然沒有人使用,才送出數(shù)據(jù)。由于每個設(shè)備采用的隨機(jī)時間不同,所以可以減少沖突的機(jī)會?;蛘咚统鰯?shù)據(jù)前,先送一段小小的請求傳送報文給目標(biāo)端,等待目標(biāo)端回應(yīng)報文后,才開始傳送。
3.2數(shù)據(jù)儲存
數(shù)據(jù)采集終端收到傳感器數(shù)據(jù),對數(shù)據(jù)進(jìn)行分析和存儲。在數(shù)據(jù)存儲上,按照隊(duì)列的先進(jìn)先出法制進(jìn)行存儲,支持3年的歷史數(shù)據(jù)存儲。
3.3告警與防誤報機(jī)制
圖5告警與防誤報程序邏輯
無線測溫系統(tǒng)通過實(shí)時監(jiān)測與處理后的數(shù)據(jù),在就地或通過后臺顯示溫度值,當(dāng)設(shè)備發(fā)生溫度異?;蛴捎诰€路中的諧波等干擾因素造成誤報,系統(tǒng)將根據(jù)傳感器采集的溫度值、溫差、相對溫差(三相不平衡)、歷史趨勢這五項(xiàng)指標(biāo)進(jìn)行分析,發(fā)出信號或閉鎖。數(shù)據(jù)采集終端針對每個測溫傳感器進(jìn)行告警設(shè)置,通過實(shí)時監(jiān)測數(shù)據(jù)與預(yù)設(shè)定的閾值進(jìn)行比較判斷。具體邏輯如圖5所示,當(dāng)狀態(tài)處于正常時,監(jiān)測到數(shù)據(jù)突然超出允許波動范圍,裝置記錄次數(shù),若記錄次數(shù)達(dá)到預(yù)設(shè)次數(shù)時,裝置發(fā)出告警信號,否則進(jìn)入休眠狀態(tài);當(dāng)監(jiān)測數(shù)據(jù)超過波動范圍時間持續(xù)達(dá)到時間閾值時,產(chǎn)生告警信息并發(fā)送。這種多次超限統(tǒng)計判斷告警模式,可避免周邊電磁干擾帶來的誤報問題。
圖6G01柜溫度監(jiān)測曲線圖
4現(xiàn)場應(yīng)用
本系統(tǒng)經(jīng)過嚴(yán)格的測試,并在廣州某智能配電房項(xiàng)目中開展了掛網(wǎng)運(yùn)行。該智能配電房內(nèi)安裝12面智能環(huán)網(wǎng)柜,分別由10kV南翔F20與10kV石橋F16進(jìn)行環(huán)網(wǎng)型供電。在每面開關(guān)柜A、B、C三相電纜頭內(nèi)分別安裝1只無線測溫傳感器,每段母線安裝1套數(shù)據(jù)采集終端,傳感器與數(shù)據(jù)采集終端之間采用Zigbee協(xié)議自組網(wǎng)通信。數(shù)據(jù)采集終端通過RS485總線與該房的智能電房監(jiān)控終端連接,數(shù)據(jù)經(jīng)物聯(lián)網(wǎng)關(guān)傳輸?shù)侥?**主站,系統(tǒng)架構(gòu)如圖1所示。經(jīng)過3個月的掛網(wǎng)試運(yùn)行和現(xiàn)場測試結(jié)果對比分析,數(shù)據(jù)傳輸準(zhǔn)確可靠,能在后臺實(shí)時掌握環(huán)網(wǎng)柜的溫度變化,為該運(yùn)行單位減少了線下運(yùn)維工作量。圖1摘取該房G01柜2019年10-12月監(jiān)測溫度繪制的曲線圖,運(yùn)行人員能準(zhǔn)確掌握開關(guān)柜的運(yùn)行溫度變化趨勢,運(yùn)行期間未曾發(fā)生數(shù)據(jù)誤報信息。
5.安科瑞電氣火災(zāi)監(jiān)控系統(tǒng)
5.1概述
Acre1-6000電氣火災(zāi)監(jiān)控系統(tǒng),是根據(jù)中心的消防電子產(chǎn)品試驗(yàn)認(rèn)證,并且均通過嚴(yán)格的EMC電磁兼容試驗(yàn),保證了該系列產(chǎn)品在低壓配電系統(tǒng)中的安全正常運(yùn)行,現(xiàn)均已批量生產(chǎn)并在全國得到廣泛地應(yīng)用。該系統(tǒng)通過對剩余電流、過電流、過電壓、溫度和故障電弧等信號的采集與監(jiān)視,實(shí)現(xiàn)對電氣火災(zāi)的早期預(yù)防和,當(dāng)必要時還能聯(lián)動切除被檢測到剩余電流、溫度和故障電弧等超標(biāo)的配電回路;并根據(jù)用戶的需求,還可以滿足與AcreIEMS企業(yè)微電網(wǎng)管理云平臺或火災(zāi)自動系統(tǒng)等進(jìn)行數(shù)據(jù)交換和共享。
5.2應(yīng)用場合
適用于智能樓宇、醫(yī)院、高層公寓、賓館、飯店、商廈、工礦企業(yè)、重點(diǎn)消防單位以及石油化工、文教衛(wèi)生、金融、電信等領(lǐng)域。
5.3系統(tǒng)結(jié)構(gòu)
5.4系統(tǒng)功能
1)監(jiān)控設(shè)備能接收多臺探測器的剩余電流、溫度信息,時發(fā)出聲、光信號,同時設(shè)備上紅色“"指示燈亮,顯示屏指示部位及類型,記錄時間,聲光一直保持,直至按設(shè)備的“復(fù)位"按鈕或觸摸屏的“復(fù)位"按鍵遠(yuǎn)程對探測器實(shí)現(xiàn)復(fù)位。對于聲音信號也可以使用觸摸屏“消聲"按鍵手動消除。
2)當(dāng)被監(jiān)測回路時,控制輸出繼電器閉合,用于控制被保護(hù)電路或其他設(shè)備,當(dāng)消除后,控制輸出繼電器釋放。
3)通訊故障:當(dāng)監(jiān)控設(shè)備與所接的任一臺探測器之間發(fā)生通訊故障或探測器本身發(fā)生故障時,監(jiān)控畫面中相應(yīng)的探測器顯示故障提示,同時設(shè)備上的黃色“故障"指示燈亮,并發(fā)出故障聲音。電源故障:當(dāng)主電源或備用電源發(fā)生故障時,監(jiān)控設(shè)備也發(fā)出聲光信號并顯示故障信息,可進(jìn)入相應(yīng)的界面查看詳細(xì)信息并可解除聲響。
4)當(dāng)發(fā)生剩余電流、超溫或通訊、電源故障時,將部位、故障信息、時間等信息存儲在數(shù)據(jù)庫中,當(dāng)解除、排除故障時,同樣予以記錄。歷史數(shù)據(jù)提供多種便捷、快速的查詢方法。
5.5配置方案
應(yīng)用場合 | 型號 | 產(chǎn)品照片 | 功能 |
消防控制室 | Acrel-6000/B | 適用于1~4條通信總線*多可連接256個探測器,可適用于壁掛安裝的場所。 | |
Acrel-6000/Q | 適用于大型組網(wǎng),壁掛式監(jiān)控主機(jī)數(shù)量較多且需集中查看的場所,主要監(jiān)測壁掛主機(jī)信息。 | ||
一、二級 低壓配電 | ARCM200L-Z2 | 三相(I、U、kW、Kvar、kWh、Kvarh、Hz、cos中),視在電能、四象限電能計量,單回路剩余電流監(jiān)測,4路溫度監(jiān)測,2路繼電器輸出,4路開關(guān)量輸入,事件記錄,內(nèi)置時鐘,點(diǎn)陣式LCD顯示,2路獨(dú)立RS485/Modbus通訊 | |
ARCM200L-J8 | 8路剩余電流監(jiān)測,2路繼電器輸出,4路開關(guān)量輸入,事件記錄,內(nèi)置時鐘,點(diǎn)陣式LCD顯示,1路RS485/Modbus通訊 | ||
ARCM300-J1 | 1路剩余電流監(jiān)測,4路溫度監(jiān)測,1路繼電器輸出,事件記錄,LCD顯示,1路RS485/Modbus通訊 | ||
AAFD-□ | 檢測末端線路的故障電弧,485通訊,導(dǎo)軌式安裝。 | ||
ASCP200-□ | 短路限流保護(hù)、過載保護(hù)、內(nèi)部超溫限流保護(hù)、過欠壓保護(hù)、漏電監(jiān)測、線纜溫度監(jiān)測,1路RS485通訊,1路GPRS或NB無線通訊,額定電流為0-40A可設(shè)。 | ||
短路限流保護(hù)、過載保護(hù)、內(nèi)部超溫限流保護(hù)、過欠壓保護(hù)、漏電監(jiān)測、線纜溫度監(jiān)測,1路RS485通訊,1路NB或4G無線通訊,額定電流為0-63A可設(shè)。 | |||
配套附件 | AKH-0.66 | 測量型互感器,采集交流電流信號 | |
AKH-0.66/L |
| 剩余電流互感器,采集剩余電流信號 | |
ARCM-NTC | 溫度傳感器,采集線纜或配電箱體溫度 |
6結(jié)束語
隨著數(shù)字電網(wǎng)與配電物聯(lián)網(wǎng)的快速發(fā)展,實(shí)現(xiàn)配電設(shè)備運(yùn)行狀態(tài)感知、數(shù)字化以及可觀、可測、可控是配電物聯(lián)網(wǎng)發(fā)展的必然趨勢。開關(guān)柜的電連接處溫度過高或者升高過快,對開關(guān)柜的安全可靠運(yùn)行的影響十分重大,而基于Zigbee通信的高壓感應(yīng)取電測溫技術(shù),具有測量精度高、體積小、抗干擾能力強(qiáng)、成本低,可以更準(zhǔn)確的掌握環(huán)網(wǎng)柜的溫度變化曲線和健康狀況。后續(xù)工作還可以結(jié)合人工智能技術(shù),為運(yùn)維單位實(shí)現(xiàn)智能運(yùn)維,進(jìn)一步提高運(yùn)維工作效率和供電可靠性。
參考文獻(xiàn)
[1]李徽勝,羅惠雄,劉佳.基于物聯(lián)網(wǎng)技術(shù)的無線測溫系統(tǒng)設(shè)計
[2]何志甘,范彥琨,陳光焰,陳紅強(qiáng),朱光南.溫度趨勢相似性在電力設(shè)備預(yù)警中的應(yīng)用[J].儀器儀表標(biāo)準(zhǔn)化與計量,2019(5):46-48.
[3]蘇東,馬仲能,李成翔,謝家正,夏成軍.配網(wǎng)開關(guān)柜全生命周期成本模型及敏感度分析[J].電力系統(tǒng)保護(hù)與控制,2018,46(1):150-155.
[4]安科瑞消防應(yīng)急照明和疏散指示系統(tǒng)/防火門監(jiān)控系統(tǒng)/消防設(shè)備電源監(jiān)控系統(tǒng)/電
[5]氣火災(zāi)監(jiān)控系統(tǒng)選型手冊.2022.05版
郵箱:2885278109@qq.com
傳真:021-69153966
地址:上海市嘉定區(qū)育綠路253號
電瓶車充電樁、電動汽車充電樁禁止非法改裝!